Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 179(22): 5089-5108, 2022 11.
Article in English | MEDLINE | ID: mdl-35760458

ABSTRACT

BACKGROUND AND PURPOSE: The pathogenesis of osteoarthritis implicates a low-grade inflammation associated to the innate immune system activation. Toll like receptor (TLR) stimulation triggers the release of inflammatory mediators, which aggravate osteoarthritis. We studied the preventive effect of 6-shogaol, a potential TLR4 inhibitor, on the treatment of experimental knee osteoarthritis. EXPERIMENTAL APPROACH: Osteoarthritis was induced in C57BL6 mice by surgical section of the medial meniscotibial ligament, which received 6-shogaol for eight weeks. Cartilage damage, inflammatory mediator presence and disease markers were assessed in joint tissues by immunohistochemistry. Computational modelling was used to predict binding modes of 6-shogaol into the TLR4/MD2 receptor and its permeability across cellular membranes. Employing LPS-stimulated chondrocytes and MAPK assay, we elucidated 6-shogaol action mechanisms. KEY RESULTS: 6-Shogaol treatment prevented articular cartilage lesions, synovitis and the presence of pro-inflammatory mediators, and disease markers in osteoarthritis animals. Molecular modelling studies predicted 6-shogaol interaction with the TLR4/MD-2 heterodimer in an antagonist conformation through its binding into the MD-2 pocket. In cell culture, we confirmed that 6-shogaol reduced LPS-induced TLR4 inflammatory signalling pathways. Besides, MAPK assay demonstrated that 6-shogaol directly inhibits the ERK1/2 phosphorylation activity. CONCLUSION AND IMPLICATIONS: 6-Shogaol evoked a preventive action on cartilage and synovial inflammation in osteoarthritis mice. 6-shogaol effect may take place not only by hindering the interaction between TLR4 ligands and the TLR4/MD-2 complex in chondrocytes, but also through inhibition of ERK phosphorylation, implying a pleiotropic effect on different mediators activated during osteoarthritis, which proposes it as an attractive drug for osteoarthritis treatments.


Subject(s)
Chondrocytes , Osteoarthritis, Knee , Animals , Catechols , Chondrocytes/metabolism , Inflammation/metabolism , Inflammation Mediators/metabolism , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptors/metabolism
2.
FASEB J ; 36(4): e22258, 2022 04.
Article in English | MEDLINE | ID: mdl-35334131

ABSTRACT

Chondrocytes in osteoarthritic (OA) cartilage acquire a hypertrophic-like phenotype, where Hedgehog (Hh) signaling is pivotal. Hh overexpression causes OA-like cartilage lesions, whereas its downregulation prevents articular destruction in mouse models. Mutations in EVC and EVC2 genes disrupt Hh signaling, and are responsible for the Ellis-van Creveld syndrome skeletal dysplasia. Since Ellis-van Creveld syndrome protein (Evc) deletion is expected to hamper Hh target gene expression we hypothesized that it would also prevent OA progression avoiding chondrocyte hypertrophy. Our aim was to study Evc as a new therapeutic target in OA, and whether Evc deletion restrains chondrocyte hypertrophy and prevents joint damage in an Evc tamoxifen induced knockout (EvccKO ) model of OA. For this purpose, OA was induced by surgical knee destabilization in wild-type (WT) and EvccKO adult mice, and healthy WT mice were used as controls (n = 10 knees/group). Hypertrophic markers and Hh genes were measured by qRT-PCR, and metalloproteinases (MMP) levels assessed by western blot. Human OA chondrocytes and cartilage samples were obtained from patients undergoing knee joint replacement surgery. Cyclopamine (CPA) was used for Hh pharmacological inhibition and IL-1 beta as an inflammatory insult. Our results showed that tamoxifen induced inactivation of Evc inhibited Hh overexpression and partially prevented chondrocyte hypertrophy during OA, although it did not ameliorate cartilage damage in DMM-EvccKO mice. Hh pathway inhibition did not modify the expression of proinflammatory mediators induced by IL-1 beta in human OA chondrocytes in culture. We found that hypertrophic-IHH-and inflammatory-COX-2-markers co-localized in OA cartilage samples. We concluded that tamoxifen induced inactivation of Evc partially prevented chondrocyte hypertrophy in DMM-EvccKO mice, but it did not ameliorate cartilage damage. Overall, our results suggest that chondrocyte hypertrophy per se is not a pathogenic event in the progression of OA.


Subject(s)
Cartilage, Articular , Chondrocytes , Osteoarthritis , Animals , Cartilage, Articular/pathology , Chondrocytes/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Hypertrophy/pathology , Interleukin-1beta/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Knockout , Osteoarthritis/metabolism , Tamoxifen/pharmacology
3.
Front Med (Lausanne) ; 7: 566250, 2020.
Article in English | MEDLINE | ID: mdl-33102504

ABSTRACT

Objective: Several studies have linked metabolic syndrome to the development of osteoarthritis (OA) through hypercholesterolemia, one of its components. However, epidemiological studies showed contradictory results, and it is not clear how hypercholesterolemia itself, or oxidized LDL (oxLDL)-a pathological molecule potentially involved in this relationship-could be affecting OA. The objectives of this study were to investigate the effect of hypercholesterolemia induced by high-fat diet (HFD) in cartilage from OA rabbits, and how oxLDL affect human chondrocyte inflammatory and catabolic responses. Design: New Zealand rabbits were fed with HFD for 18 weeks. On week 6, OA was surgically induced. At the end of the study, cartilage damage and IL-1ß, IL-6, MCP-1, MMP-13, and COX-2 expression in articular cartilage were evaluated. In addition, cultured human OA articular chondrocytes were treated with oxLDL at concentrations equivalent to those expected in synovial fluid from HFD rabbits, in the presence of IL-1ß and TNFα. The effect of oxLDL on cell viability, nitric oxide production and catabolic and pro-inflammatory gene expression was evaluated. Results: HFD intake did not modify cartilage structure or pro-inflammatory and catabolic gene expression and protein presence, both in healthy and OA animals. OxLDL did not affect human chondrocyte viability, ADAMTS5 and liver X receptor (LXR) α gene expression, but decreased the induction of IL-1ß, IL-6, MCP-1, MMP-13, iNOS, and COX-2 gene expression and MMP-13 and COX-2 protein presence, evoked by cytokines. Conclusions: Our data suggest that cholesterol intake per se may not be deleterious for articular cartilage. Instead, cholesterol de novo synthesis and altered cholesterol metabolism could be involved in the associations observed in human disease.

4.
Front Med (Lausanne) ; 7: 506, 2020.
Article in English | MEDLINE | ID: mdl-32984382

ABSTRACT

Inflammation triggered by metabolic imbalance, also called metainflammation, is low-grade inflammation caused by the components involved in metabolic syndrome (MetS), including central obesity and impaired glucose tolerance. This phenomenon is mainly due to excess nutrients and energy, and it contributes to the pathogenesis of osteoarthritis (OA). OA is characterized by the progressive degeneration of articular cartilage, which suffers erosion and progressively becomes thinner. Purinergic signaling is involved in several physiological and pathological processes, such as cell proliferation in development and tissue regeneration, neurotransmission and inflammation. Adenosine and ATP receptors, and other members of the signaling pathway, such as AMP-activated protein kinase (AMPK), are involved in obesity, type 2 diabetes (T2D) and OA progression. In this review, we focus on purinergic regulation in osteoarthritic cartilage and how different components of MetS, such as obesity and T2D, modulate the purinergic system in OA. In that regard, we describe the critical role in this disease of receptors, such as adenosine A2A receptor (A2AR) and ATP P2X7 receptor. Finally, we also assess how nucleotides regulate the inflammasome in OA.

5.
Sci Rep ; 10(1): 10745, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32612184

ABSTRACT

Osteoarthritis (OA) is a multifactorial joint disease mainly affecting articular cartilage (AC) with a relevant biomechanical component. During endochondral ossification growth plate (GP) chondrocytes arrange in columns. GPs do not ossify in skeletally mature rodents. In neonatal mice, an altered joint loading induces GP chondrocyte disorganization. We aimed to study whether experimental OA involves GP disorganization in adult mice and to assess if it may have additional detrimental effects on AC damage. Knee OA was induced by destabilization of the medial meniscus (DMM) in wild-type (WT) adult mice, and in Tamoxifen-inducible Ellis-van-Creveld syndrome protein (Evc) knockouts (EvccKO), used as a model of GP disorganization due to Hedgehog signalling disruption. Chondrocyte column arrangement was assessed in the tibial GP and expressed as Column Index (CI). Both DMM-operated WT mice and non-operated-EvccKO showed a decreased CI, indicating GP chondrocyte column disarrangement, although in the latter, it was not associated to AC damage. The most severe GP chondrocyte disorganization occurred in DMM-EvccKO mice, in comparison to the other groups. However, this altered GP structure in DMM-EvccKO mice did not exacerbate AC damage. Further studies are needed to confirm the lack of interference of GP alterations on the analysis of AC employing OA mice.


Subject(s)
Cartilage, Articular/cytology , Chondrocytes/cytology , Growth Plate/cytology , Osteoarthritis/physiopathology , Tibia/cytology , Alleles , Animals , Biomechanical Phenomena , Cartilage, Articular/pathology , Female , Mice , Mice, Knockout , Signal Transduction , Tamoxifen/pharmacology
6.
Biochem Pharmacol ; 165: 24-32, 2019 07.
Article in English | MEDLINE | ID: mdl-30825432

ABSTRACT

Osteoarthritis (OA) is a chronic joint disease characterized by cartilage degradation, osteophyte formation, subchondral bone sclerosis, and synovitis. Systemic factors such as obesity and the components of the metabolic syndrome seem to contribute to its progression. Breakdown of cartilage ensues from an altered balance between mechanical overload and its absorption by this tissue. There is in this context a status of persistent local inflammation by means of the chronic activation of innate immunity. A broad variety of danger-associated molecular patterns inside OA joint are able to activate pattern recognition receptors, mainly TLR (toll-like receptor) 2 and 4, which are overexpressed in the OA cartilage. Chronic activation of innate immune responses in chondrocytes results in a robust production of pro-inflammatory cytokines and chemokines, as well as of tissue-destructive enzymes, downstream of NF-κB and MAPK (mitogen activated protein kinase) dependent pathways. Besides, the toxic effects of an excess of glucose and/or fatty acids, which share the same pro-inflammatory intracellular signalling pathways, may add fuel to the fire. Not only high concentrations of glucose can render cells prone to inflammation, but also AGEs (advanced glycation end products) are integrated into the TLR signalling network through their own innate immune receptors. Considering these mechanisms, we argue for the control of both primary inflammation and proteolytic catabolism as a preventive strategy in OA, instead of focusing treatment on the enhancement of anabolic responses. Even though this approach would not return to normal already degraded cartilage, it nonetheless might avoid damage extension to the surrounding tissue.


Subject(s)
Immunity, Innate , Inflammation/complications , Osteoarthritis/prevention & control , Animals , Chondrocytes/immunology , Disease Progression , Glycation End Products, Advanced/physiology , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/physiology , Osteoarthritis/etiology , Toll-Like Receptors/physiology
7.
J Inflamm (Lond) ; 16: 2, 2019.
Article in English | MEDLINE | ID: mdl-30728752

ABSTRACT

BACKGROUND: In order to gain insight into the early effects drawn by JAK inhibitors on intra-joint JAK/STAT-dependent signaling, we sought synovial activation of STATs and their end-products, along with their modification with tofacitinib (TOFA), at flare-up in antigen induced arthritis (AIA). New Zealand rabbits were randomly assigned to four groups -healthy controls, AIA, TOFA-treated AIA, or TOFA-treated controls-. AIA was induced with 4 weekly intra-articular ovalbumin injections in sensitized animals. TOFA (10 mg·kg- 1·day- 1) was administered for the last 2 weeks. Animals were euthanized 24 h after the last injection. RESULTS: AIA animals showed high-grade synovitis, which was partially improved by TOFA. No effects of the treatment were found on serum C-reactive protein or on the synovial macrophage infiltration at this stage. Synovial MMP-1,-3 and -13 expression levels in treated AIA rabbits were found to drop to those of controls, while a downregulation of IL6, IFNγ and TNF was evident in treated versus untreated AIA rabbits. Concurrently, a reduction in pSTAT1 and SOCS1, but not in pSTAT3, SOCS3 or active NFκB-p65, was noted with TOFA. CONCLUSIONS: Studying the mechanism of action of immunomodulatory drugs represents a major challenge in vivo, since drug-dependent decreases in inflammation very likely mask direct effects on disease mechanisms. This study design allowed us to prevent any confounding effect resulting from reductions in the overall inflammatory status, hence assessing the true pharmacological actions of TOFA in a very severe synovitis. Our findings point to pSTAT1 and MMPs as early molecular readouts of response to this JAK inhibitor.

8.
Nat Commun ; 10(1): 797, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30770808

ABSTRACT

FXR1 is an alternatively spliced gene that encodes RNA binding proteins (FXR1P) involved in muscle development. In contrast to other tissues, cardiac and skeletal muscle express two FXR1P isoforms that incorporate an additional exon-15. We report that recessive mutations in this particular exon of FXR1 cause congenital multi-minicore myopathy in humans and mice. Additionally, we show that while Myf5-dependent depletion of all FXR1P isoforms is neonatal lethal, mice carrying mutations in exon-15 display non-lethal myopathies which vary in severity depending on the specific effect of each mutation on the protein.


Subject(s)
Genes, Recessive , Genetic Predisposition to Disease/genetics , Muscle, Skeletal/metabolism , Mutation , Myopathies, Structural, Congenital/genetics , Ophthalmoplegia/genetics , RNA-Binding Proteins/genetics , Ryanodine Receptor Calcium Release Channel/deficiency , Animals , Cells, Cultured , Exons/genetics , Gene Expression , HEK293 Cells , HeLa Cells , Humans , Mice, Transgenic , Myopathies, Structural, Congenital/congenital , Myopathies, Structural, Congenital/metabolism , Ophthalmoplegia/congenital , Ophthalmoplegia/metabolism , RNA-Binding Proteins/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism
9.
Arthritis Res Ther ; 19(1): 264, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29191221

ABSTRACT

BACKGROUND: Metabolic syndrome (MetS) may be associated with knee osteoarthritis (OA), but the association between the individual components and OA are not well-understood. We aimed to study the effect of hypercholesterolemia on synovial inflammation in knee OA. METHODS: OA was surgically induced in rabbits fed with standard diet (OA group, n = 10) or in rabbits fed with high fat diet (OA-HFD, n = 10). Healthy rabbits receiving standard diet (Control, n = 10) or fed with HFD (HFD, n = 6) were also monitored. Twelve weeks after OA induction, synovial membranes were isolated and processed for studies. RESULTS: Animals fed HFD showed higher levels of total serum cholesterol, triglycerides and C-reactive protein than control rabbits. Twelve weeks after OA induction, synovial membrane inflammation and macrophage infiltration were increased in rabbits with OA, particularly in the OA-HFD group. Extensive decrease of synovial adipose tissue area, adipocyte size and perilipin-1A synthesis were observed in the OA-HFD group in comparison to the OA and control groups. The HFD further increased the proinflammatory mediators IL-1ß, IL-6 and TNF in the OA synovium. However, the synovial gene expression of adipokines, such as leptin and adiponectin, were markedly decreased in the rabbits with OA, especially in the OA-HFD group, in correlation with adipose tissue loss. However, circulating leptin was upregulated in the HFD and OA-HFD groups. CONCLUSION: Our results indicate that a HFD is an aggravating factor worsening synovial membrane inflammation during OA, guided by increased infiltration of macrophages and removal of the adipose tissue, together with a remarkable presence of proinflammatory factors. Synovial adipocytes and dyslipemia could probably play pivotal roles in OA joint deterioration in patients with MetS, supporting that the link between obesity and OA transcends mechanical loading.


Subject(s)
Arthritis, Experimental/pathology , Lipodystrophy/pathology , Osteoarthritis/pathology , Synovitis/pathology , Animals , Arthritis, Experimental/etiology , Diet, High-Fat/adverse effects , Hypercholesterolemia/complications , Lipodystrophy/etiology , Male , Metabolic Syndrome/complications , Osteoarthritis/etiology , Rabbits , Synovial Membrane/pathology , Synovitis/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...